Imperial College London

UK-China Bilateral Workshop MEEA, Nanjing, 14-17 October 2018

Preparation of Functional Membranes

Kang Li Department of Chemical Engineering Imperial College London

Barrer Centre breakthrough separations materials, science and engineering

Inorganic membranes with a variety of geometries

*****Geometries

- Disk
- Flat-sheet
- Hollow fibre
- Multi-channels

From membranes to modules

Barrer Centre breakthrough separations materials, science and engineering

From geometry to morphology control

Membrane cross-sectional structure design

Hierarchical structure of micro-channels in an flat-sheet alumina membrane

Interfacial instability

- Rayleigh-Taylor,
- Viscous fingering,
- Marangoni effect

Micro-channels sandwiched by inner and outer separation layers

Micro-channels open at the outer surface

Micro-channels open at the inner surface

And other morphologies...

The fabrication technique is quite versatile and can be used for almost all the inorganic materials:

- Functional ceramics
- Engineering ceramics
- Metals

Barrer Centre breakthrough separations materials, science and engineering

Dense functional ceramic membranes

 $\xrightarrow{e^-}$

- Mixed ionic-electronic conducting (MIEC) membranes for oxygen separation
- Perovskite type materials: $SrCo_{0.8}Fe_{0.2}O_{3-\delta}$, $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$, $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$, etc.
- Dual-phase composite materials: $Bi_{1.5}Y_{0.3}Sm_{0.2}O_3 La_{0.8}Sr_{0.2}MnO_{3-\delta}$, $Ce_{0.8}Gd_{0.2}O_{2-\delta} La_{0.7}Sr_{0.3}MnO_{3-\delta}$, etc.
- Mixed proton–electronic conducting membranes for hydrogen separation
- *Perovskite type materials:* $SrCe_{0.95}Yb_{0.05}O_{3-\delta}$, $BaCe_{0.8}Y_{0.2}O_{3-\delta}$ etc.
- Dual-phase composite materials: $SrZrO_{3-\delta} SrFeO_{3-\delta}$, $La_{27}W_{3.5}Mo_{1.5}O_{55.5-\delta} La_{0.87}Sr_{0.13}CrO_{3-\delta}$, etc.

Morphology design leads jumps of the performance

Barrer Centre breakthrough separations materials, science and engineering

Ceramic membrane reactors: multi-functionality

Oxidative Coupling of Methane (OCM)

Barrer Centre breakthrough separations materials, science and engineering

Engineering ceramic membranes: Al₂O₃, Yttrium stabilised zirconia (YSZ), SiC etc.

- 1. Microfiltration & Ultrafiltration:
- 0.02-1 μm pore size suitable for most MF/UF applications;
- high permeation flux;
- low fouling tendency
- high temperature and high pressure use

2. As a substrate for a variety of separation layers

a) UiO-66, Zirconium Metal-Organic Framework (MOF) membrane for organic solvent dehydration and sea water desalination, Liu, Xinlei, et al. *JACS*, 137 (2015) 6999.

3. Catalytic convertor substrate

- Go% reduction in catalyst loading
- 50% reduction in catalyst ageing
- 40 70% reduction in pressure drop
- 50% reduction in catalytic converter volume

**Other 2-D materials such as Molybdenum disulfide (MoS₂), Cr₂O₃, Al₂O₃ is being studied

(b) Supported graphene/graphene oxide membrane for for organic solvent and water permeation , Aba et.al., JMS , 484(2015)87

(c) Plating of Pd and Nickel membrane for hydrogen separation

Coating of three-way catalysts in micro-channels for emission control

Led to a spin-out company MicroTech Ceramics Limited

Multifunctional membranes: the incorporation of functional materials

 Incorporation of catalysts and adsorbents into membranes: Separation/filtration, adsorption or reaction achieved in one step

1. Simultaneous microfiltration and arsenic removal

2. Hydrogen permeation and methane conversion

Ceramic hollow fibre membrane embedded with UiO-66 particle for arsenic removal

*Wang, C. et al., Chem. Commun. 2016, 52 (57), 8869-8872.

Barrer Centre breakthrough separations materials, science and engineering

Metallic hollow fibres

Membrane chromatography **

Copper hollow fibre with open microchannels offer increased surface area

Coated with GC stationary phase

Supported graphene membranes **

Raman Spectrum shows Dense copper layer surface continuous graphene after CVD

The New capillary GC column

- Negligible pressure drop
- Surface area/volumn can be 15 times higher than normal capillary columns with same diameter
- Accordingly higher stationary ۰ phase loading, resulting in better separation efficiency
- Possibility to separate gas pairs unachievable by normal capillary columns

Barrer Centre breakthrough separations materials, science and engineering

Green manufacturing process for high performance membranes

Combined Crystallisation and Diffusion (CCD) Method: An versatile membrane fabrication technique

Unidirectional cooling from bottom

A different PVDF membrane achieved

Water flux one order of magnitude higher than commercial PVDF membranes with similar pore size,

*Wang, et al , *Nat. Commun.* **2016,** 7, 12804.

Imperial College

ondon

Barrer Centre breakthrough separations materials, science and engineering

Imperial College London

Acknowledgement

